Wie schreibt man Topologe?
Wie schreibt man Topologe?
Wie ist die englische Übersetzung für Topologe?
Beispielsätze für Topologe?
Anderes Wort für Topologe?
Synonym für Topologe?
Ähnliche Wörter für Topologe?
Antonym / Gegensätzlich für Topologe?
Zitate mit Topologe?
Erklärung für Topologe?
Topologe teilen?
Topologe {m}
Das Wort vorlesen lassen:
DE - EN / Deutsch-Englisch für Topologe
🇩🇪 Topologe
🇺🇸
Topologist
Übersetzung für 'Topologe' von Deutsch nach Englisch.
German-English translation for Topologe.
Topologe English translation.
Translation of "Topologe" in English.
Scrabble Wert von Topologe: 8
Dabei können Sie von folgender Bepunktung der Buchstaben ausgehen: 1 Punkt - A, D, E, I, N, R, S, T, U; 2 Punkte - G, H, L, O;
3 Punkte - B, M, W, Z; 4 Punkte - C, F, K, P; 6 Punkte - Ä, J, Ü, V; 8 Punkte - Ö, X; 10 Punkte - Q, Y.
Das „ß“ gibt es beim Scrabble nicht und muss durch zwei „s“ ersetzt werden.
SCRABBLE® is a registered trademark of J.W. Spear & Sons Limited
Beispielsätze für bzw. mit Topologe
🙁 Es wurden keine Beispielsätze für Topologe gefunden.
Anderes Wort bzw. Synonyme für Topologe
🙁 Es wurden keine Synonyme für Topologe gefunden.
Ähnliche Wörter für Topologe
🙁 Es wurden keine ähnlichen Wörter für Topologe gefunden.
Antonym bzw. Gegensätzlich für Topologe
🙁 Es wurde kein Antonym für Topologe gefunden.
Zitate mit Topologe
🙁 Es wurden keine Zitate mit Topologe gefunden.
Erklärung für Topologe
Die Topologie (von griechisch τόπος tópos „Ort, Platz, Stelle“ und -logie) ist die Lehre von der Lage und Anordnung geometrischer Gebilde im Raum und damit ein fundamentales Teilgebiet der Mathematik. Sie beschäftigt sich mit den Eigenschaften mathematischer Strukturen, die unter stetigen Verformungen erhalten bleiben, wobei der Begriff der Stetigkeit durch die Topologie in sehr allgemeiner Form definiert wird. Die Topologie ging aus den Konzepten der Geometrie und Mengenlehre hervor.
Gegen Ende des 19. Jahrhunderts entstand die Topologie als eine eigenständige Disziplin, die auf Latein geometria situs ‚Geometrie der Lage‘ oder analysis situs (Griechisch-Latein für ‚Analyse des Ortes‘) genannt wurde.
Seit Jahrzehnten ist die Topologie als Grundlagendisziplin anerkannt. Dementsprechend kann sie neben der Algebra als zweiter Stützpfeiler für eine große Anzahl anderer Felder der Mathematik angesehen werden. Sie ist besonders wichtig für die Geometrie, die Analysis, die Funktionalanalysis und die Theorie der Lie-Gruppen. Ihrerseits hat sie auch die Mengenlehre und Kategorientheorie befruchtet.
Der grundlegende Begriff der Topologie ist der des topologischen Raums, welcher eine weitreichende Abstraktion der Vorstellung von „Nähe“ darstellt und damit weitreichende Verallgemeinerungen mathematischer Konzepte wie Stetigkeit und Grenzwert erlaubt. Viele mathematische Strukturen lassen sich als topologische Räume auffassen. Topologische Eigenschaften einer Struktur werden solche genannt, die nur von der Struktur des zugrundeliegenden topologischen Raumes abhängen. Dies sind solche Eigenschaften, die durch „Verformungen“ oder durch Homöomorphismen nicht verändert werden. Dazu gehört in anschaulichen Fällen das Dehnen, Stauchen, Verbiegen, Verzerren und Verdrillen einer geometrischen Figur. Zum Beispiel sind eine Kugel und ein Würfel aus Sicht der Topologie nicht zu unterscheiden; sie sind homöomorph.
Ebenso sind ein Donut (dessen Form in der Mathematik als Volltorus bezeichnet wird) und eine einhenkelige Tasse homöomorph, da eine in die andere ohne Schnitt transformiert werden kann (siehe Animation). Dagegen ist die Oberfläche des Torus von der Kugelfläche topologisch verschieden: Auf der Kugel lässt sich jede geschlossene Kurve stetig auf einen Punkt zusammenziehen (die anschauliche Sprache lässt sich präzisieren), auf dem Torus nicht jede.
Die Topologie gliedert sich in Teilgebiete. Hierzu zählen die algebraische Topologie, die geometrische Topologie sowie die topologische Graphen- und die Knotentheorie. Die mengentheoretische Topologie kann als Grundlage für all diese Teildisziplinen angesehen werden. In dieser werden insbesondere auch topologische Räume betrachtet, deren Eigenschaften sich besonders weit von denen geometrischer Figuren unterscheiden.
Ein wichtiger Begriff der Topologie ist die Stetigkeit. Stetige Abbildungen entsprechen in der Topologie dem, was man in anderen mathematischen Kategorien meist Homomorphismen nennt. Eine umkehrbare, in beiden Richtungen stetige Abbildung zwischen topologischen Räumen heißt ein Homöomorphismus und entspricht dem, was in anderen Kategorien meist Isomorphismus heißt: Homöomorphe Räume sind mit topologischen Mitteln nicht zu unterscheiden. Ein grundlegendes Problem dieser Disziplin ist es, zu entscheiden, ob zwei Räume homöomorph sind, oder allgemeiner, ob stetige Abbildungen mit bestimmten Eigenschaften existieren.
Quelle: wikipedia.org
Topologe als Bild teilen
Du möchtest andere auf die richtige Schreibweise von Topologe hinweisen? Hier kannst du passende Bilder zu "Topologe" direkt auf Social Media teilen. Klicke dazu einfach bei dem jeweiligen Bild auf und wähle die gewünschte Variante bzw. Social Media Plattform aus.
Das deutsche und das englische Wörterbuch basieren auf der Wortliste von Frank Richter welche unter GPL Version 2 or later; GNU General Public License verfügbar ist. Wie schreibt man was, verschiedene Schreibweisen und Beispielsätze sind Daten von wie-schreibt-man.com. Die Zitate stammen von Wikiquote, mit der Lizenz CC-BY-SA. Deutsche Morphologie-Daten, basierend auf Morphy (Link,Original source, Lizenz). Wir können keine Garantie und keine Haftung für die Richtigkeit und Vollständigkeit dieser Seite übernehmen.